Герметики

Разные герметики выделяются, по нескольким признакам.Первым делом можно выделить группу, в которой герметики отличаются готовностью к применению:

1-компонентные(т.е.годные к непосредственному применению) ;

2-х и более компонентные (требуют перед использованием точного и тщательного смешения компонентов).

Другую группу составляют герметики, отличающиеся по типу основы:

-акриловые;

-уретановые;

-тиоколовые (полисульфидные);

-силиконовые (они же – силоксановые, кремнийорганические).

Силиконовые герметики имеют полный набор всех необходимых качественных и эксплуатационных показателей, отвечающих требованиям, предъявляемым к современным герметизирующим материалам.

Но и другие герметики,тоже имеют право на существование, потому ,что у каждого материала существуют области применения, где они прекрасно выполняют своё назначение.

Герметики акриловые:

Акриловые герметики, как и акриловые клеи, являются очень распространённым материалом. Это самые дешевые из современных строительных герметиков. Однако они, как правило, не предназначены для наружных работ. Причина в том, что акриловые мастики не эластичны, а пластичны – они отлично наносятся, но не выдерживают механических нагрузок, например при перепадах температур. Область применения акриловых герметиков – неответственные участки внутренней герметизации. Этот герметик, например, незаменим при устранении небольших отверстий, сглаживании стыков в стенах, потолках, окнах, дверях, полах. Он прекрасно подходит для внутренних работ. Акриловым герметиком можно заделать достаточно широкую трещину в подоконнике.

Герметик на основе акрила легко выравнивается, очень прост в работе, до высыхания хорошо отмывается водой, а после высыхания водостоек. И что еще немаловажно – такой герметик разбавляется водой. Это бывает очень удобно при заделке глубоких трещин и отверстий – разбавленный водой герметик просто заливается туда, и при высыхании мы получаем идеально ровную поверхность.

Кроме того, поверхность герметика хорошо покрывается различными красящими веществами и легко штукатурится. Герметики на акриловой основе не содержат в своем составе растворителей. Акриловые герметики имеют хорошую адгезию (прилипаемость) к бетону, кирпичной кладке, древесине, штукатурке и пр.

Кроме этого, у них хорошая устойчивость к свету и ультрафиолетовым лучам.

Герметики полиуретановые:

Полиуретановые герметики представляют собой эластичную, клеящую, уплотняющую массу на полиуретановой основе, сохраняющую свою эластичность долгое время. Этот герметик может применяться для склеивания и герметизации любых материалов: металла, древесины, камня, лакированной жести, пластмассы, керамики, бетона. Полиуретановые герметики имеют хорошую адгезию и обеспечивают прочное склеивание поверхностей, не разрушаемое даже при сильных землетрясениях (до 5 баллов). Они идеально подходят для герметизации межпанельных швов, а также рекомендуются для герметизации узлов соединений сборных конструкций, кровельных стыков, стыков строительных конструкций с бетонными, металлическими, деревянными или ПВХ поверхностями. У них даже есть и преимущества перед силиконовыми герметиками. Судите сами, при случайном повреждении упругий силикон лопается. Отремонтировать силиконовый шов невозможно т.к. силикон не имеет адгезии к полимеризованному силикону. Удалить мастику из шва можно только механически или специальным раствором. При этом приходится удалять полностью весь шов. После этого, как правило, шов герметизируют полиуретаном.

Полиуретановые герметики характеризуются следующими свойствами:

  • Обладают стойкостью против коррозии. Полимеризация происходит под воздействием влажности воздуха, при этом создается прочный и эластичный герметичный шов.
  • Устойчивы к воздействию УФ излучения, солей, кислот и щелочей в разумных концентрациях (до 10%).
  • Не изменяют своего объема при вулканизации, не стекают по стене, легко окрашиваются.
  • Имеют короткое время отвердения (быстро схватываются).

Нужно учесть, что полиуретановые герметики имеют в своем составе вредные, едкие вещества, при работе с ними нельзя допускать их попадания на открытые участки кожи.

Перед нанесением герметика выполняется стандартная подготовка поверхности (очистка от жира, влаги, мусора и пыли). Первоначальная пленка образуется через 1-1,5 ч., а окончательное застывание при толщине слоя 3 мм происходит в течение 20 часов. Срок хранения полиуретановых герметиков в оригинальной упаковке при полной защите от попадания влаги, при температурном режиме от 0 до +20°C более 9 месяцев. После вскрытия упаковки долгий срок хранения герметика недопустим, так как он теряет свои свойства.

Герметики тиоколовые:

Наиболее прочные, эластичные и долговечные из всех видов герметиков – тиоколовые. Имеют двухкомпонентную структуру, после смешивания отверждаются в течение нескольких часов или суток, дают усадку, имеют хорошую адгезию, но малую эластичность и прочность. Герметики на основе тиоколов отличаются высокой устойчивостью к действию растворителей, щелочей, минеральных кислот, озона, атмосферных осадков, а также обладает бензо- и маслостойкостью. Поэтому материал целесообразно применять в местах примыкания проезжих частей, например, на бензоколонках, в гаражах и на автостоянках. Температурный диапазон эксплуатации тиоколовых герметиков от – 55°C до + 130°C. Срок их службы составляет 20 – 30 и более лет.

В наше время их довольно часто,применяют при производстве стеклопакетов ,благодаря тому, что они характеризуются малыми значениями газо- и влагопроницаемости. В мире более 80% стеклопакетов для энергосберегающего остекления зданий изготовляется с их применением. Кроме того, с помощью тиоконовых герметиков производят герметизацию швов бетонных и железобетонных конструкций с максимальной деформацией 25%. Они герметично покрывают стыки, щели, трещины. Их применяют в гидротехническом строительстве. При работе с герметиком необходимо пользоваться индивидуальными средствами защиты. Избегать постоянного соприкосновения с кожей. Чтобы подготовить тиоколовые герметики к работе, смешивают их основной компонент с отвердителем, помня, что «жизнеспособность» приготовленной смеси не более двух часов, а схватывается она в течение двух-трех суток.

Герметики силиконовые:

В основном силиконовые герметики, применяются в качестве изоляторов при установке оконных рам, дверных проемов, металлических конструкций. Они обеспечивают герметичность, исключая проникновение воды, запахов и пр.; применяются внутри и снаружи помещений; входящий в состав силиконовых герметиков в виде основы силиконовый каучук обладает хорошей адгезией к стеклу, дереву, неокисленным металлам, эмали, керамике, а также высокой термостойкостью и стойкостью к погодным условиям.
Силиконовые герметики не желательно покрывать краской. Они выпускаются различных цветов, от бесцветного и белого до черного. Силиконовые герметики экологически безвредны и безопасны для человека, с ними можно работать без специальных средств защиты.

Силиконовые герметики способны заменить все другие. К тому же они отличаются долговечностью.

В общем для силиконовых герметиков характерны следующие отличительные особенности:

Стойкость к УФ излучениям.
Устойчивость ко всем погодным условиям и практически любым агрессивным средам.
Отличная адгезия к большинству видов строительных материалов даже без использования грунтовок.
Прекрасная способность воспринимать деформацию (перемещение, повороты) шва.
Повышенная устойчивость к резким перепадам температур (сохраняют упруго-эластичные свойства) в диапазоне от -50 до +200°C.
Широкий интервал температур применения (нанесение на поверхности от -30° до +60°C).

Силиконовые герметики являются сложной композицией, в которую входят следующие компоненты:

основа – силиконовый каучук;
усилитель (служит для повышения показателя прочности и обеспечения тиксотропных свойств, т.е. для устранения потеков на наклонных и вертикальных поверхностях);
наполнитель ( выполняет ряд второстепенных функций);
краситель (при необходимости);
вулканизующий компонент (для превращения первоначальной пастообразной консистенции герметика в резиноподобный материал под действием влаги воздуха);
промоторы адгезии (обеспечивает прочный постоянный контакт герметика с поверхностью);
силиконовый пластификатор (повышает эластичные свойства герметика).

Исходя из того, что силиконовые герметики обязательно содержат вулканизующий компонент, они дополнительно подразделяются еще на два типа: кислые («уксусные» – во время вулканизации им присущ запах уксуса) и нейтральные (аминные, оксимные, амидные, спиртовые).

Силиконовые герметики с определенным типом вулканизующего компонента имеют свои преимущества и недостатки. Так, «кислые» герметики дешевле, чем «нейтральные», однако их ни в коем случае нельзя использовать при герметизации поверхностей и материалов, которые могут взаимодействовать с выделяющейся во время вулканизации герметика уксусной кислотой с образованием растворимых солей (цементсодержащие материалы, алюминий и другие). В этом отношении «нейтральные» герметики являются более универсальными, т.к. этого ограничения у них нет, но при этом они более дорогие.

Несмотря на «универсальность» силиконового герметика, в ряде случаев необходимо внимательно относиться к выбору его марки, для того, чтобы он полностью выполнял свои функции. Например, существует ряд материалов, в основном это пластики (поликарбонат, и, особенно поликарбонат с УФ-защитой, полиэтилен, полипропилен, тефлон, ПВХ) к которым адгезия (прилипаемость) подавляющего большинства герметиков недостаточна. В этом случае необходимо использовать «профессиональные» (специализированные) марки герметиков, что является довольно дорогой вещью. Второй вариант – использование «рядовых» герметиков в паре со специальными грунтовками, которые создают промежуточный слой между «проблемной» поверхностью и герметиком.

Кроме того, герметики с противогрибковыми добавками, которые используются в местах с биологически агрессивной средой (туалетные и ванные комнаты, кухня, бассейны, душевые и т.п.), ни в коем случае нельзя применять для изделий и материалов, контактирующих с пищей.

Одним словом, рекомендуется осуществлять планирование покупки герметиков только после детального ознакомления с характеристиками предлагаемых марок и получения исчерпывающих рекомендаций по их свойствам и областям применения.

Многие фирмы, не являющиеся производителями силиконовых составляющих, закупают их на стороне. Соответственно, чтобы выдержать конкуренцию с основными производителями конечного продукта, они идут на разные ухищрения, направленные на снижение его стоимости. Вот некоторые основные способы.

При перефасовке из крупной тары (контейнер, бочки) в более мелкую (картриджи, тубы) – дополнительная модификация качественного исходного герметика дешевым органическим маслом – пластификатором. Далее – продажа под видом, что предлагаемый герметик «100% силиконовый», «…известной фирмы и только перефасован…».
Перефасовка герметика с истекшим сроком годности.
Изготовление по собственным рецептурам и под своей торговой маркой из приобретенных компонентов, но с сильно уменьшенным содержанием силиконовых компонентов путем частичной или полной замены силиконового пластификатора значительно более дешевым органическим маслом.

Как следствие – потребитель получает под видом «силиконового» герметизирующий материал, но, в конечном итоге, подчас практически полностью утративший все свойства действительно силиконового герметика. Так, при чрезмерной «модификации» силиконового герметика органическим маслом, герметик утрачивает, в частности, допуск на использование при отрицательных температурах. О чем некоторые производители вынужденно указывают («… температура нанесения не ниже +5°C»), продолжая заявлять, что предлагают силиконовый герметик. Более правильным его следовало бы именовать «силиконизированный». По уровню качества данный герметик – вулканизуемая замазка сугубо узкого назначения для швов и мест, практически не подвергающихся деформациям. Данное ограничение объясняется тем, что чем больше силикона заменяется на дешевый органический пластификатор, тем больше данный материал уходит от эластичного к пластичному и тем более возрастает угроза недопустимой усадки с течением времени (пластификатор диффундирует на поверхность и улетучивается).

Выбор герметика:

Покупать тот или иной вид герметиков рекомендуется только после детального ознакомления с характеристиками предлагаемых марок и получения исчерпывающих рекомендаций по свойствам и областям применения. Все эти рекомендации покупатель имеет полное право потребовать у продавца. И очень важно, чтобы это были не устные заверения, а информация, предоставленная непосредственным производителем товара.

К такой информации относятся фирма-производитель и страна производства, система отвердения (тип герметика – «кислый» или «нейтральный»), рекомендуемые и допускаемые области применения, плотность (г/куб см), время отвердения до отлипа (мин.), полное отвердение (дни); твердость по Шору; модуль (МПа) при растяжение 100%; прочность на растяжение при разрыве (МПа); относительное удлинение при разрыве (%); аккомодация движению; допустимая температура нанесения (°С); допустимая температура эксплуатации (°С); гарантийный срок хранения (мес.).

Что скрывается за этими спецификациями? Остановимся несколько подробнее на самых основных.Для определения механических свойств при растяжении, образец герметика подвергается растяжению с одновременной регистрацией зависимости деформации от усилия.

Относительное удлинение (растяжение) при разрыве – это разница между конечной и начальной величиной герметика, выраженная в процентах относительно его исходного размера. Относительное удлинение на 100% эквивалентно растяжению в 2 раза.

Прочность при разрыве – это отношение усилия, вызвавшего разрушение образца, к площади поперечного сечения шва.

Если деформация не привела к разрушению, то говорят о напряженности. Вычисляют эту величину так же, как и прочность при разрыве, посредством деления растягивающего усилия на площадь поперечного сечения шва.Герметики stroikadom.com

Основной параметр, по которому различают герметики, – это не величина максимального удлинения, а степень сопротивления растягивающему усилию. Способность герметика сопротивляться деформациям оценивается напряженностью, возникающей при его двукратном поперечном растяжении. Эта напряженность называется модулем 100%-ного растяжения.

Что можно узнать из этих данных? Допустим, есть щель между раковиной и стеной толщиной 5 мм. Естественно, что она может менять свои размеры, например, из-за нажима на край раковины. Каким материалом можно воспользоваться, чтобы эту щель заделать? Если смещение не превышает 50%, то, по идее, любым из силиконовых герметиков. Во всяком случае, любой из силиконовых герметиков способен к однократному растяжению более чем в 1,5 раза.

Большой интерес представляет состояние герметика при разрыве, выраженное значением напряженности (прочности) силикона в этот момент. Зная эту величину, можно оценить нагрузку, которую выдержит герметик, если используется в качестве клея.

Другой, измеряемый показатель – модуль 100%-ного поперечного растяжения. Он определяет, каков герметик на ощупь. Чем выше модуль, тем материал тверже. Модуль поперечного растяжения влияет на выбор сферы применения герметика. Высокомодульные разновидности целесообразно применять в конструкциях, подвергающихся значительным механическим воздействиям (вес, ветровые нагрузки, давление воды). Для общестроительных работ больше подходят низкомодульные материалы. Они лучше переносят многократные деформации сжатия-растяжения.

Целью метода для определения адгезионных (когезионных) свойств является выяснение допустимой деформации шва, при которой возможные в реальных условиях колебания температуры не вызывают разрушения герметика. Испытания заключаются в проведении серии воздействий различных температур на образцы, находящиеся в сжатом или растянутом состоянии. Каждый цикл включает в себя сжатие шва на заданную деформацию и выдержку в таком состоянии при повышенной температуре (как правило, при +70°С), затем следует охлаждение до отрицательных температур (как правило, при -20°С) с последующим растяжением на ту же деформацию и выдержка при этой температуре не менее 24 часов.От материалов, выдержавших испытания при 25%-ной деформации, стоит ожидать надежной службы в течение нескольких десятилетий. Образцы, не прошедшие этот тест при 12,5%-ной деформации, для герметизации наружных компенсационных швов не годятся. Аналогичные критерии отбора применимы для материалов, заполняющих промежутки между стеной и оконным блоком или дверной коробкой, между оконным блоком и наружным стеклом.

Способность переносить температурные нагрузки важна не только при наружных работах, но и внутри помещения. Например, герметик, которым заделали щель между металлической мойкой и столешницей, должен выдерживать нагревание, возникающее всякий раз при открытии крана с горячей водой.Следует отметить, что успешность прохождения этого теста сильно зависит от материала поверхности.

Большинство герметиков выдерживают испытания на образцах из керамики и стекла, но снижают показатели на фрагментах шва из алюминия.В ходе испытаний для определения свойств адгезии с удлинением образец шва из двух опор, скрепленных герметиком, погружается в дистиллированную воду на четверо суток, а затем, если удастся, растягивается в 1,6 и 2 раза и фиксируется на 24 часа (при температуре +23°С).

Для получения информации о степени оказанного воздействия параллельно с экземплярами, выдержанными в воде, испытанию подвергаются контрольные образцы.Герметик считается выдержавшим испытание, если по истечении 24 часов сохраняется сплошной шов и не происходит отслоения от контактируемых поверхностей. По полученным данным можно судить о пригодности герметика к определенной области применения (герметизация поверхностей из определенных материалов).

Вопрос об отношении герметика к воде обязательно возникает при заделке межплиточных швов в бассейне, в случае кровельных работ, наружного остекления, когда ожидается заливание герметизируемых щелей водой.

Герметик считается выдержавшим испытания, если оба образца шва разрушились по самому герметику, а не в результате его отслоения от скрепляемых поверхностей.

Время отвердения до отлипа (мин.) – время, по истечении которого поверхность герметика перестает быть липкой. По своей сути – это время образования поверхностной пленки.

Полное отвердение (дни). В связи с тем, что процесс вулканизации однокомпонентных герметиков происходит под действием влаги воздуха, данный процесс зависит от влажности, температуры и глубины шва герметика. После того как герметик по всей массе затвердеет, процесс набора прочности продолжается и, как правило, заканчивается через 5-7 дней. Соответственно полный цикл от момента нанесения до практически полного набора всех прочностных показателей и характеризует данный показатель.

Твердость по Шору – показатель, характеризующий «твердость» образующегося вулканизата по сравнению с другими резиноподобными материалами.

Допустимая температура нанесения (°С) – температурный диапазон, в интервале которого рекомендуется (допускается) наносить герметик.

Допустимая температура эксплуатации (°С) – температурный диапазон, в интервале которого гарантируется сохранение заявляемых прочностных показателей вулканизата данного герметика.

Гарантийный срок хранения (мес.) – срок, в течение которого производитель гарантирует сохранение всех заявляемых прочностных показателей. По истечении этого срока эти показатели могут как остаться прежними, так и начать снижаться. Данный срок должен быть указан на каждой единице тары.

Post navigation

Добавить комментарий